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Abstract
In this work, we propose a fast conjugate gradient method (CGM) for beamforming, after 
thoroughly analyzing the performances of the least mean square (LMS), the recursive least 
square (RLS), and the sample matrix inversion (SMI) adaptive beamforming algorithms. 
Various experiments are carried out to analyze the performances of each beamformer in 
detail. The proposed conjugate gradient method does not use the Eigen spread of the signal 
correlation matrix as in the case of the LMS and the RLS methods. It computes antenna 
array weights orthogonally for each iteration. Hence the convergence rate and the null 
depths of the proposed method are much better than the LMS, the SMI the RLS and the 
classical CGM. Also, the simulation results confirm that this method has a speed improve-
ment of about 60% over the classical conjugate gradient method. This aspect significantly 
reduces the processor burden and saves a  lot of power during  the beamforming process. 
Hence the proposed method is superior compared to the LMS, the RLS, the SMI, and clas-
sical CGM and most suitable for high-speed mobile communication.
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1  Introduction

An adaptive beamformer [1–5] shown in Fig. 1 is a novel technology and it has been used 
in the wireless communication systems for many years. By administering advanced net-
workability, it enhances the revenues of network operators and provides fewer chances of 
discarded calls to consumers.

An adaptive beamformer performs spatial signal processing adaptively. It consists of 
an array of transmitters and receivers. These systems are initially developed in the early 
1960s for radar [6, 7] and sonar [8, 9]. The modern applications of adaptive beamform-
ers includes radio telemetry, long term evolution (LTE) [10], imaging [11], seismology 
[12], mobile sensor networks [13], biomedicine [14], 5G cellular communication [15], 
IEEE802.16 WiMax [16], W-CDMA [17], and UTM [18].
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There are several adaptive beamforming methods are available in the literature for 
wireless communication, among them, most popular are the LMS, the RLS, the SMI 
and the CGM algorithms. However, most of these methods present the difficulty of 
practical  implimentation due  to many aspects [19, 20]. In the literature, the LMS is 
the simplest and the most studied approach among all the beamforming methods [21]. 
This beamforming algorithm requires a  large number of iterations for the beamform-
ing which makes it unfit for a few wireless communication applications [22]. To solve 
this problem, the RLS algorithm uses a gain matrix in place of gradient step size. The 
RLS algorithm requires less iterations, has better nulling and null depth than the LMS 
approach [23, 24]. The SMI algorithm is a fast/nulling beamforming approach because 
of the direct computation of the covariance matrix [25, 26]. It uses the matrix inversion 
technique which avoids the iterations for the beamforming. This method is much better 
than the LMS and the RLS in most applications [27–29].

The CGM [30] enhances the convergence speed by using conjugate paths for each new 
iteration to provide the optimum solution. The CGM technique has fast convergence rate 
and good null depth than the aforementioned methods [31–33].

In this research, convergence rate and null depths of the proposed beamformer is 
improved by improving the classical CGM algorithm. The proposed algorithm provides 
about 60% of improvement in convergence speed over the classical CGM.

2 � Array Signal Model

Consider a uniform linear antenna array (ULA) composed of L antenna elements, 
L = (1, 2,… , L − 1) for a DOA problem. Let, M number of source signals are impinging 
from directions 

[(

�o
)

,
(

�1
)

,
(

�2
)

,… ,
(

�L−1
)]

 . Let the spacing between each antenna ele-
ments be d = 0.5�, where λ is the wave number of incoming signals. The signal received at 
the ULA is expresses as

Fig. 1   Block representation of an adaptive beamformer
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Here, �
(

�i
)

 = Steering vector of L-element for the �i directions. �(n) = Induced signal vector, 
which is a complex micro chromatic at time n . �(n) = Noise vector at each antenna element, it 
has zero mean and �2

n
 variance. � =

[

�
(

�o
)

, �
(

�1
)

, �
(

�2
)

,… , �
(

�L−1
)]

 , L × L array manifold 
vector.

This array manifold vector includes all possible steering vectors.

3 � Adaptive Beamforming Algorithms

In adaptive beamforming technique, antenna groups are utilized to focus the maximum power 
in the direction of the intended signal while discarding matching frequency signals from 
unwanted directions. Weights of the antenna are computed and updated adaptively using sig-
nal samples [19–21].

This adaptive method allows a fine beam in the intended path plus decreased yield in addi-
tional paths, which brings effect in noteworthy enhancement in signal-to-interference-plus-
noise ratio (SINR). Base stations are exclusively used to transmit each received signal from 
client by using this technique.

This significantly diminishes the complete intrusion in the system. This is accomplished by 
varying the weights applied to a single antenna used in the array [22–25].

3.1 � The LMS Algorithm

The LMS beamforming approach is quite simple and exploited in many wireless communica-
tion applications until today [26]. This method can perform beamforming without the require-
ment of matrix inversion which is used in the SMI method. It uses a fixed step size for beam-
forming. This makes the LMS the most competent and simple. Hence this approach is usually 
most commonly considered adaptive beamforming technique in various applications.

The LMS method can be designed using the following weight equation

Here, e(n) = �(n) − wH(n)�(n) and � =
2

3tr(�xx)

The antenna array output for this method is

Here, w(n) = weight vector, μ = step size, e = error signal and Rxx = autocorrelation matrix.

3.2 � The Sample Matrix Inversion (SMI) Algorithm

This beamformer is also known as ‘direct matrix inversion’ (DMI). The SMI  scheme uses 
K-time snapshots to estimate the average time of ACM. This scheme uses optimum Weiner 
solution to calculate the antenna array weights and it is given by

Here, �−1
xx

 represents the  inverse of autocorrelation matrix of �
xx

 . �xs is the 
cross-correlation.

�(n) =
[

�
(

�o
)

, �
(

�1
)

, �
(

�2
)

,… , �
(

�L−1
)]

�(n) + �(n) = � ⋅ �(n) + �(n).

(1)w(n + 1) + w(n) + �e∗(n)�(n)

output ∶ y(n) = w(n) ∗ �(n)

(2)w(n) = �
−1
xx

�xs
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The autocorrelation matrix and cross-correlations are expressed as

where X is the matrix of the induced signal. XH is the hermitian transpose of the matrix X . 
S is the matrix of a reference signal and E is the expectation operator.

The correlation matrix �xx can be estimated using the following expression

where k is the observation vector.
The correlation matrix �xs can be expressed as

This method is also known as a block adaptive approach since it uses a block of data and it 
estimates the antenna array weights by block by block. The array factor for beamforming can 
be calculated using the expression:

3.3 � The Recursive Least Square (RLS) Algorithm

The RLS algorithm is one of the most popular adaptive beamforming algorithms in array sig-
nal processing. It has a fast convergence rate as compared to the LMS and the SMI schemes.

An important aspect of the RLS scheme is that this method does not require the inversion 
of a matrix. Hence this method has a better convergence rate and can also be used for large 
antenna array-based communication systems. The required correlation vector and the correla-
tion matrix can be calculated recursively. These parameters can be expressed as

Here, k is the block length. The weighted estimate of the above expression can be obtained 
as

�xx = E[XX
H] and �xs = E

[

XSH
]

(3)�xx =
1

K

k
∑

n=1

�(n)�(n)H

(4)�xs =
1

k

k
∑

n=1

�
∗(n)�(n)

(5)AF =

L
∑

i=1

wH(i) ej 2� d sin(�) − 90◦ ≤ � + 0.001 ≤ +90◦

(6)�xx(n) =

k
∑

n=1

�k(n)�
H(n)

(7)�(n) =

k
∑

i=1

�
∗(n)�(n)

(8)

�xx(n) =

k
∑

n=1

�k−1�k(n)�
H
k
(n)

�(n) =

k
∑

n=1

�k−1�∗(n)�k(n)
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Here, � is the ‘forgetting factor’ and it is sometimes also called “exponential weighting 
of factor rank (2)”. Here the value of ‘ � ’ is a positive constant (0 ≤ � ≤ 1).

4 � The Proposed Conjugate Gradient Method

The eigenvalue spread of the array covariance matrix is the problem with the steepest 
descent schemes. The greater eigenvalue spreads result in slower convergences. The con-
jugate gradient approach accelerates the convergence rate of the beamforming algorithm. 
It searches perpendicular (conjugate) paths for every iteration to provide an optimum solu-
tion. The proposed CGM approach is an iterative method and its main goal is to reduce the 
quadratic cost function

Let us take the gradient of cost function as:

Where ϑ is the k × L is array matrix samples. The weight update equation of classical 
CGM is

Here, the value of step size is given by

Here, Dn is the direction vectors r(n) is residual vector respectively.
Now let us update the direction vector and residual vector as: 

Now, the value of �(n) can be obtained by the use of linear search which minimizes 
J(w(n)).

Now, using (13)–(17), the new CGM technique for efficient beamforming is devised as 
follows.

The correlation matrix � can be estimated using the following expression as:

(9)�xx(n) = ��xx(k − 1) + �(n)�H(n)

(10)�(n) = ��(k − 1) + �
∗(n)�(n)

(11)J(w) =
1

2
wHw − sHw

(12)∇wJ(w) = �w − �

(13)w(n + 1) = w(n) − �(n)�n(n)

(14)�(n) =
�H(n)��H�(n)

�H
n
(n)�H��n(n)

(15)�n(n + 1) = �H�(n + 1) − �(n)�n(n)

(16)�(n + 1) = �(n) + �(n)��n(n)

(17)�(n) =
�H(n + 1)��H�(n + 1)

�H(n)��H�(n)
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where k is the observation vector. The correlation matrix � can be expressed as

Now the weight of the proposed CGM method is expressed as

where wk(n) is the kth weight vector at time n. �k(n) is the step size which is required to 
update the weights. �k−1(n) is the parameter for searching the direction. The expression of 
this parameter can be obtained as

Here fk(n) is the opposite gradient direction of a cost function which is expressed as

The iteration expression of the above value can be written as

The value of the ak(n) is given in the following lines to have the minimum cost function as

The parameter ℏk(n) mentioned in (21) is very useful to obtain the �k(n) orthogonally for 
the direction vector 

{

�k(n), (k = 1, 2,…)
}

 . The expression of ℏk(n) can be expressed as

The expressions from (18)–(25) represent the process of the proposed CGM algorithm.
Finally, the array factor for beamforming can be calculated as

5 � Results and Discussion

Computer simulations have been conducted for various adaptive beamforming algo-
rithms to study the performance of well-known methods and the proposed method. In 
these simulations, L element arrays with inter- element spacing d = 0.5λ are considered. 
The variance of σ2 = 0.01 is assumed. In each method, the  array element weights are 

(18)� =
1

k

k−1
∑

n=1

�(n − k)�H(n − k)

(19)� =
1

k

k−1
∑

n=1

�
∗(n − k)�(n − k)

(20)wk(n) = wk(n − 1) − �k(n)�k−1(n)

(21)�k(n) = fk(n) + ℏk(n)�k−1(n).

(22)fk(n) = −∇J
(

wk(n)
)

.

(23)fk(n) = fk−1(n) − �k(n)�k(n)�m−1(n)

(24)�k(n) = −

[

�
H
k−1

(n)fk−1(n)

�
H
k−1

(n)�k(n)�k−1(n)

]

(25)ℏk(n) = −

[

f H
k
(n)�k(n)�k−1(n)

�
H
k−1

(n)�k(n)�k−1(n)

]

(26)AF =

L
∑

i=1

wH(i) ej 2� d sin(�) − 90◦ ≤ � + 0.001 ≤ +90◦
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calculated according to the  design equations of the  adaptive beamformer. Also, array 
factors are calculated and plotted for the range − 90o ≤ θ ≤ 90o.

5.1 � Analysis of the LMS Algorithm

Now, firstly let us study the performance of the LMS beamformer in detail. The simula-
tion parameters used in this method are tabulated in Table 1.

The  simulated results of the LMS algorithm are shown below. Figure 2a and b are 
the radiation pattern in rectangular and polar form respectively. The normalized array 
pattern of the LMS algorithm is shown in Fig. 2c. The LMS algorithm is the first choice 
of communication engineer when a  simple beamforming method is required. Though 
it less complex, requires huge iterations (about 80) before producing the signal. Hence 
this method is not recommended method fast communication applications.

5.2 � Analysis of the SMI Algorithm

The simulation parameters used for SMI scheme are as follows:
Consider a ULA array configuration with array elements = 10; array antenna spac-

ing (d) = λ/2; angle of desired signal = θ0 = 0°, angle of interference signal θ1 = − 60°. 
Let block length = 30. Consider a white Gaussian noise with variance σ2

n
 = 0.01. The AF 

plots in rectangular and polar forms are shown in Fig. 3a and b respectively. The nor-
malized array pattern of the SMI algorithm is shown in Fig. 3c.

The SMI method uses computation of the inverse of the autocorrelation matrix which 
leads to error. Hence this method is not suitable for communication systems in which 
large antenna arrays are required.

5.3 � Analysis of the RLS Algorithm

Let us consider a  number of elements = 06, a  number of snapshots = 200, the  spacing 
between the array elements, d = �/2, the value of � = 0.91 , AOA of the interference sig-
nal = − 60° and AOA of induced signal = 0°. The radiation pattern in rectangular and polar 
forms is shown in Fig. 4a, b respectively. The normalized array pattern of the RLS algo-
rithm is shown in Fig. 4c.

Table 1   Simulation parameters 
of the LMS algorithm

S. no Parameters Values

1 Type of antenna configuration ULA
2 Antenna elements 8
3 Inter element spacing d = 0.5λ
4 AOA of induced signal 00

5 Interferences [− 20° 30°]
6 Values of step size μ = 0.2
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Figure  5a, b show the convergence of weight vector and convergence of estimated 
parameters of the RLS algorithm respectively.

It can be noticed that the error of this algorithm decreases for each iteration.

5.4 � Results and Analysis of the Proposed Algorithm

The simulation parameters used for the  implementation of the proposed CGM algorithm 
are as follows,

Consider the following parameters used for the simulation of the proposed algorithm. 
Let inter-element spacing (d) = λ/2, DoA = θ0 = 0°, angle of interference = θ1 = − 30°, 
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Fig. 2   a Radiation pattern. b Polar pattern. c Normalized array pattern, L = 8
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number of samples = 200, forgetting factor � = 0.91, number of array elements = 5 and 
40 and additive white noise with variance σ2

n
 = 0.01. The results obtained for the less 

array elements (N = 5) are shown below. Figure 6a and b represent the rectangular and 
polar forms of radiation patterns obtained for the proposed method for L = 5 antenna 
elements. The real part of the desired signal at the array output is shown in Fig.  7. 

Fig. 3   a Radiation pattern. b Polar pattern. c Normalized array pattern L = 5
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Fig. 4   a Radiation pattern. b Polar pattern. c Normalized array pattern, L = 5

Fig. 5   a Convergence of weight vector. b Convergence of estimated parameters
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The normalized antenna array pattern is shown in Fig.  8. The normal and the three-
dimensional (3D) view of the normalized antenna array pattern is shown in Fig. 8a, b 
respectively.  

The proposed method can be applied for the larger array elements. When the array 
elements L = 4, the antenna weights are as follows. The simulation results for this case 
are shown from Figs. 9, 10 and 11.  

Fig. 6   Radiation pattern: a rectangular pattern. b Polar pattern for less array elements

Fig. 7   The real part of the pro-
posed algorithm
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Fig. 8   Normalized power Pattern of the proposed method a normal view, b 3D-view for less array elements

Fig. 9   Normalized array pattern 
for large array elements (L = 40)

Fig. 10   Normalized power pattern of the proposed method a normal view, b 3D-view for less array ele-
ments

Author's personal copy



Adaptive Beamformers for High‑Speed Mobile Communication﻿	

1 3

w1 = 1,    w2 = 0.95633 − 0.026015i,    w3 = 0.93249 − 0.070915i,    w4 = 0.93541 − 0.12167i   
w5 = 0.96424 − 0.16353i,   w6 = 1.0106 − 0.18437i,   w7 = 1.0611 − 0.17812i,    w8 = 
1.1009 − 0.1466i,   w9 = 1.1187 − 0.098956i,   w10 = 1.1091 − 0.049027i,   w11 = 
1.0751 − 0.011303i,       w12 = 1.0263 + 0.0032649i,   w13 = 0.97716 − 0.0095522i,   w14 = 
0.94175 − 0.046034i,   w15 = 0.93042 − 0.095589i,   w16 = 0.94644 − 0.14383i,   w17 = 
0.98517 − 0.17676i,      w18 = 1.0354 − 0.18481i,   w19 = 1.0825 − 0.16565i,   w20 = 
1.1128 − 0.12484i,   w21 = 1.1175 − 0.074223i,   w22 = 1.0953 − 0.0285i    w23 = 
1.0526 − 0.00094008i,   w24 = 1.0017 + 0.00045527i,   w25 = 0.95758 − 0.024719i,   w26 = 
0.93289 − 0.069154i,   w27 = 0.93484 − 0.11995i, w28 = 0.96286 − 0.16236i,   w29 = 
1.0088 − 0.18408i,   w30 = 1.0594 − 0.1788i,   w31 = 1.0999 − 0.14804i,   w32 = 
1.1185 − 0.10075i,   w33 = 1.1099 − 0.050651i,   w34 = 1.0766 − 0.012282i,   w35 = 
1.0282 + 0.0032153i,   w36 = 0.97872 − 0.008658i,   w37 = 0.94263 − 0.044455i,  w38 = 
0.93035 − 0.093784i,   w39 = 0.94545 − 0.14233i,   w40 = 0.98354 − 0.17599i.

The normalized radiation pattern of the proposed method for large array elements is 
shown in Fig. 9. The normal and three-dimensional normalized array pattern is shown 
in Fig. 10a and b respectively. The convergence analysis of the classical CGM and the 
proposed method is shown in Fig.  11a and b respectively. From the above figures we 
note that the proposed conjugate gradient method has the fastest convergence rate over 
all the methods discussed in the paper. The improvement factor of the proposed method 
over classical CGM is calculated as follows.

5.5 � Calculation of Improvement Factor

Let us consider the  number of iterations of the  CGM algorithm for beamform-
ing = �L = 10.

Also, the number of iterations of the proposed method for beamforming = �N = 4

Fig. 11   Plot of convergence a classical CGM. b The proposed CGM
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The above calculation and the experimental results illustrate that the proposed method 
has about 60% of improvement over the classical CGM algorithm. This significantly 
reduces the processor speed and saves a lot of power. Hence this method is most suitable 
for 5G and beyond cellular communication. A comparison of various popular beamformers 
is tabulated in Table 2.

6 � Conclusion

The main concern of this research is to analyze various beamforming methods and to pro-
pose a fast beamforming method. The LMS is the most popular and studied beamforming 
method among the adaptive beam formring algorithms. But the key demerit of this tech-
nique is that it requires a  large number of iterations before beamforming. It takes more 
iterations to produce the required beam which is an undesirable and inefficient method and 
not suitable for high-speed mobile communication.

Computer simulations are evident that the proposed CGM beamforming method exhib-
its superior performance in terms of convergence rate, accuracy, null depths, speed and 
robustness as compared to the LMS, the RLS, the SMI and classical CGM methods. The 
proposed method has about 60% of improvement over the classical CGM method. Hence 
the communication system using this method can provide enhanced system capacity as 
compared to the other methods.
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