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ABSTRACT 

Reinforced Concrete columns with larger height with respect to lateral dimension are subjected to significant lateral 

deformation on application of external load (either axial or eccentrical) and subsequently develop secondary moment. This 

moment induces additional deflection and hence there is an increase in secondary moment. As a result the load-moment curve 

becomes non-linear. It is obvious that due to this secondary moment the load carrying capacity of the column is reduced. 

Prediction of ultimate load for reinforced concrete slender columns involves study of buckling through material non-linearity 

and cracking behaviour of cross section, since the failure occurs in inelastic range. The present design methods of reinforced 

concrete slender columns suggested by American, British and Indian code provisions are either empirical or involve 

cumbersome procedure. To circumvent the above, a simple, realistic and rational theory is proposed, incorporating the 

behaviour of reinforced concrete slender columns rectangular in cross section, bent in single curvature. The theory also 

incorporates the material non-linearity and effect of cracking at the time of failure. An experimental investigation is 

undertaken to validate the theory developed. In addition, design charts are prepared based on the theory and a realistic design 

procedure is proposed for practical applications. 

 

INTRODUCTION 

 Slender Reinforced concrete columns are subjected to significant lateral deformation, fails mainly by 

buckling, due to development of secondary moment. It is obvious that due to this secondary moment the load 

carrying capacity of the column is reduced (Mac Gregor et al. 1970). In existing practice, the analysis is carried 

out by various methods like Moment Magnifier Method, Reduction Factor Method and Additional Moment 

Method (Mac Gregor et al. 1970). The loads thus obtained from first order analysis are modified to account for 

slenderness effect. Many authors (Guralinic, S.A. and Swartz,E. 1969, Guralinic,S.A. and Suresh Desai, 1970, 

Mac Gregor et al. 1970, Poun-Hewi Chaung et al. 1998 ) have  proposed different procedures to assess the 

strength of slender columns and to design slender columns. But generally they have used the modulus for 

concrete as suggested by ACI Specifications and the moment of inertia as either transformed section or modified 

section (Poon-Hwei Chaung et al. 1998), based on the empirical formula incorporating the stability and cracking 

behaviour of the column. However, a rational approach for the moment of inertia calculation will be, to 

incorporate the cracking and variation of cracking along the height of the column. 

 In general the current methods either lack rationalism or simplicity in accounting the effect of lateral 

deflection, non-linear material characteristics of concrete and cracking of the section in the analysis and design 

of slender RCC columns. Instead they are either largely empirical or tend to be too complex for every day design 

office use (Vijaya Rangan 1990). Hence, the aim of this paper is to present a rational, realistic and a simple 

method to design slender RCC columns which will also find easy application among design engineers. 

  

RESEARCH SIGNIFICANCE 

 Among many researchers who had suggested design procedures for the design of slender columns, 

pioneering contribution had been made by Mac Gregor (1970,1993,1996), B.VijayaRangan (1990), Guralinic, 

S.A (1969 & 1970), Swartz,E (1969), Suresh Desai (1970), Poon-Hwei Chaung and Sia-Keong Kong (1998). 

 The theory proposed by Guralinic, S.A. and Swartz, E (1969) is based on the use of transformed section to 

calculate moment of inertia (Itr) and the modulus of concrete is calculated based on ACI (1963) provisions, which 

are empirical in nature. Also the procedure is restricted with only two cases i.e., Slender column bent in single 

curvature due to equal end moments or eccentricities applied simultaneously, since the test data available are not 

sufficient for other complex cases. Further Guralinic,S.A and Suresh Desai (1970), suggested another procedure 

based on the moment magnification concept, incorporating second order theory. In which, the central deflection 

is calculated using Fourier series (Timoshenko, 1961). This procedure correctly predicts the collapse load and 

modes of failure, but a generalized procedure to analyse the slender column for complicated cases such as 

column with unequal end moments, column with double curvature, side sway etc., is not developed. 

 Vijaya Rangan (1990) suggested a method based on simplified stability analysis incorporating all the general 

features including creep. But in this procedure also the modulus of concrete and moment of inertia calculations 

are more empirical. 

 In the numerical method evaluated by Poon-Hwei Chaung et al (1998) to analyse slender reinforced concrete 

columns, based on transformation concept, a constant modulus for concrete is obtained from the different secant 

moduli of reinforcing steel and concrete (Carrasquillo et al.1981) Here, Transformed section is used to calculate 

the moment of inertia (Itr) which is again empirical. 

 Need for the Present Work 

 The effective flexural stiffness (EI) of a slender reinforced column is strongly affected by cracking and its 

variation over the height at the time of buckling and inelastic behaviour of concrete and reinforcing steel. 
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Flexural stiffness (EI) is, therefore a function of many variables and does not lend itself to very simple analytical 

equations as suggested by American code (2002) British (1997) and Indian (2000) standards. Hence it is required 

to develop a theory based on a realistic modulus value of the material at the instant of buckling. Out of various 

moduli suggested by researchers such as Young’s modulus, Tangent modulus, Double Modulus, Secant modulus 

etc., (Alexander Chajes, 1974), a suitable flexural rigidity is to be arrived at, such that it will truly incorporate the 

non-linear material characteristics as well as cracking behaviour of the concrete section. An experimental 

investigation is carried out to validate the proposed theory and a design procedure is suggested to design 

reinforced concrete slender column incorporating all the above parameters. 

THEORY 

 A theory has been proposed and published (Parameswaran.P et al. 2004) by the author to analyse a pin-

ended slender reinforced concrete column subjected to axial load with initial imperfections/eccentricity and 

deforming in single curvature, incorporating the material and geometrical non-linearity of the column. This 

theory provides a simple, realistic and rational approach to find the strength of the slender column based on the 

stability criteria. It is assumed that the critical strain occurs at the point of bifurcation and a suitable flexural 

rigidity (EI) values is evaluated based on the non-linear stress-strain characteristics of the material and the 

effective cross section at the time of failure. 

 To account for the material non-linearity in concrete, out of many stress-strain relations available, the 

following (Levi 1961) expression is used for its general acceptance.  
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where, 

ccf = Ultimate 28 days cylinder compressive strength of concrete 

o = Concrete strain corresponding to stress ccf  

 = Maximum strain in concrete. 

 

 To calculate the buckling load, use of tangent modulus in evaluating the flexural rigidity (EI) value is 

generally accepted by many researchers (Chajes 1974), even though it leads to conservative values. But, this is 

not valid in the descending part of the stress-strain curve, since it yields negative values in this zone. Hence, to 

achieve still more realistic modulus value even in drooping portion also, secant modulus is adopted in this 

approach and is given by, 
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 At the time of buckling, tensile cracks are developed over the cross section and gross moment of inertia is 

not valid and hence it is to be modified accordingly. By knowing the position of neutral axis (Xu), the net cross 

section under compression can be calculated. From Fig.10, it is clear that the locus of the position of neutral axis 

‘Xu’ for various sections along the length of the column will be parabolic or straight line in nature depending on 

the values of e/D, d´/D, strength of concrete and percentage of steel. Hence the effective depth of the section can 

be arrived as,  

 netgrneteff DDDD 
3

1
, for parabolic variation  (3) 

 netgrneteff DDDD 
2

1
, for straight line variation       

 (4) 

 But in general for practical problem, to be on conservative side, effective depth can be assumed as given in 

Eq. (3). Hence the effective moment of inertia is given by,  
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 Critical strain in slender column will occur when the column deforms from straight configuration to that of 

adjacent bent configuration i.e., point of bifurcation. Hence, the critical strain can be evaluated by equating the 

strength of the section to corresponding Euler’s critical load at the time of bifurcation and is given by 

(Parameswaran.P et al. 2004), 

Critical strain, 
a

acbb
cr
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   (6)         where, 

pa 1  



Turkish Journal of Computer and Mathematics Education   Vol.12 No. 11 (2021), 6188 - 6197 

Research Article 

6190 

 

          













2

86969
9412010040

.

f

p
.)p(.b

cc

 

2

0395.0


c           

 Note: If the length of the column is short such that cr , as determined from Eq. (6) is greater than or equal to 

o  (i.e., 0.002), then the load carrying capacity of the column, crP is controlled by material failure and must be 

evaluated as per the strength considerations of a short column. 

 

In practice, no column exists without imperfections/eccentricity. The effects of an imperfect column can also be 

studied (Chajes 1974) by considering a straight but eccentrically loaded member, assuming that the member is 

initially straight, the material obeys Hooks law and the deformation remains small. At the time of application of 

load, deformation will increase and by equating the internal resisting moment at midheight of the column to the 

corresponding applied moment, the deformation at the midheight of the column can be evaluated. The deflection 

due to eccentricity is given by (Chajes 1974), 
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 Using the Eqs.(1)-(6), critical load for any slender column subjected to axial load with or without 

eccentricity can be calculated as, 
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 Note: If a column has double curvature initially, its strength will be more than that of same column bent in 

single curvature, but at the time of failure, the column bends only in single curvature and hence the strength of 

the column gets reduced suddenly. However, since the theory is based on single curvature bending, the results 

from the theory are always conservative.        

EXPERIMENTAL PROGRAMME 

 An investigation was undertaken to study the behaviour and strength of concrete column subjected to axial 

load with or without eccentricity. The results thus obtained were compared with the theory (Parameswaran.P et 

al. 2004) developed based on stability criteria and conclusions are drawn. Totally ten number of columns (both 

axially and eccentrically loaded) with different slenderness values (l/d) varying from 8 to 50 were cast and tested. 

The slenderness ratios were selected such that the columns fall in the categories of short, slender and very 

slender columns.  

Materials 

 A nominal mix to yield M 20 grade concrete, as specified by IS 456-2000 was used. OPC 43 grade cement, 

natural river sand and crushed graded aggregate of maximum size 10mm were used. HYSD steel with 0.2% 

proof strength of 415 MPa was used for main reinforcement and lateral ties. 

Casting of Specimen   

  The moulds were prepared with plywood, in order to achieve accuracy in dimensions of the specimens. 

The ends of the columns were widened and provided with suitable bearing plate and reinforcement (Fig.1) to 

ensure uniform distribution of loading and to prevent local failure at the support during testing. The column 

specimens were cast horizontally in the moulds and thoroughly vibrated by means of a needle vibrator. The 

columns were de-moulded on the next day and cured with wet gunny bags. The specimen details are as indicated 

in Table1. Control specimens such as cubes (150mm×150mm×150mm) and cylinders (150mm diameter × 300 

mm height) were cast along with every specimen and cured at the same condition as that of specimen. 

Test Setup 

 UTM of capacity 1000 kN modified with suitable attachments particularly for testing columns (Fig.2) was 

used to test the column specimens. Ball and socket arrangement was provided at the top and a hinge was 

provided at bottom end. The verticality of the columns were checked with plumb bob.  Columns were tested with 

varying load eccentricities, with a value of 0.05D for CC groups and 0.25D for EC groups. Ball and socket 

assembly ensures that the load eccentricity is maintained at all stages of loading. LVDTs were placed at uniform 

vertical intervals as shown in Fig.2, to measure the longitudinal deflections of the column. Electric Resistant 

Strain gauges were affixed on both faces of column at the midheight to measure the strain variations.  

Test Procedure 

 The loads were applied axially with minimum eccentricity (0.05D) and required eccentricity (0.25D). An 

initial set load of 5 kN was applied and released to zero in each test and then initial readings were observed. The 

loads were applied gradually with uniform increment till the column failed. For each increment of load 
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longitudinal deflections at various heights and strain at midheight of both faces were measured. 

DISCUSSIONS 

Failure Loads and Failure modes 

 A summary of test data is given in Table 2 which gives ultimate load, mid height deflection at ultimate load 

and maximum strain for the test specimen. The average compressive strength (fck) of the specimen is 40.1 MPa. As 

expected, the increase in slenderness ratio decreased the ultimate load carrying capacity of the column. The failure 

load was also dependent on the load eccentricity. An increase in the load eccentricity resulted in a decrease in 

failure load and increase in mid height deflection at failure (CC group and EC group). In general, the column failed 

at midheight or close to mid height. 

 Generally, when a column is subjected to axial load, it fails either due to crushing or buckling depending on 

the slenderness effect, material properties, magnitude and eccentricity of the applied load and its end conditions. If 

a column is perfectly straight and short and is subjected to axial load and if the magnitude of the eccentricity is 

very small such that it does not develop any appreciable bending moment, it fails by crushing. In such failures, 

concrete fails by crushing and shearing outwards along the inclined planes in addition to the vertical bursting 

cracks due to the tensile stress developed in outward direction (Nilson 2001). 

 Whereas a slender column, whether it is subjected to axial force with or without imperfection/eccentricity, 

exhibits large lateral deformation, leading to a buckling failure (Fig.3). In such cases, failure will be initiated by 

spalling of the cover concrete in the compression zone (Fig.4) and flexural cracks will develop and gradually 

extend inside the section along the tension face and finally an unbound deformation will take place. Sometimes, 

depending on the level of imperfection and eccentricities present at the ends, columns with very high slenderness 

ratio may deflect in double curvature and when the load is increased gradually the deflection on one part of the 

column gets reversed and becomes single curvature deflection before failure, which is called as a phenomenon of 

reversal of deflection (Timoshenko and Gere 1961). This occurs because of the non-linear relation between the 

deflection and the compressive force. 

 In the present study some of the above modes of failures were observed. Short and intermediate columns with 

minimum eccentricity or imperfections (CC1, CC2 and EC1) did not show much lateral deflection (less than 

0.05D) and exhibited typical failure. Columns with larger eccentricity (CC5 and EC5) had shown sheet spalling of 

the cover concrete in compression zone. This kind of sheet spalling behaviour of failure in very slender columns 

with larger load eccentricities was already observed by Lloyd and Rangan (1996) in their experiments. Column 

EC5 had shown a typical reversal of deflection (Timoshenko and Gere 1961) phenomenon as discussed above. All 

the other columns (slender in nature) failed in flexure with spalling of cover concrete in the compression zone and 

tensile cracks along the tension face. The mid height deflection observed in these columns varied from 0.09D to a 

maximum of 0.24D depending upon the slenderness ratio, initial imperfection and load eccentricity. When the 

critical load is reached the deflection became unbound and which led to buckling failure of the column.        

Load- Deflection curves     
         Fig.5 and Fig.6 illustrates typical load-deflection curves at midheight for the tested columns. The curves 

show the ductile behaviour of the columns. For the eccentrically loaded columns the deflections are found to be 

predominant which is an important criteria in stability problems, hence the load eccentricity being a significant 

parameter. The following general features are observed; 

1. Short or intermediate Column with small load eccentricity show minimum deformation and the failure is initiated 

by the sudden spalling of cover concrete in compression zone. 

2. Slender columns with large load eccentricity exhibited greater deformations at failure load. Very slender column 

with load eccentricity developed tensile cracks with unbound deformations prior to failure. 

Moment-Curvature curves   

 The curvature at midheight of the column was calculated based on the strain measurements taken and moment 

curvature curves were plotted, and found that, these curves have the same trend that of the load-deformation curves 

and it is inferred that when the load is increased, the column loses its flexural rigidity. The ultimate strain values at 

failure compare well with the critical strain calculated from the theory as observed in Table 3. 

 Comparison of predicted and experimental critical loads 

  South well plot is generally an accepted procedure to evaluate critical load for columns that fail within 

elastic limit. But in the present study short and intermediate columns were also tested which failed beyond elastic 

limit and hence this method cannot be used here. Kwon and Hancock’s (1992) procedures to evaluate critical load 

are briefed here.  

 Critical load can be calculated by plotting the load against the square of deflection and subsequently fitting a 

line through the test data in post buckling region. The intersection of the fitted line and the initial tangent can be 

taken as the critical load. From Fig.5 it is found that fitting a straight line, which, falls on at least three readings, to 

draw a proper tangent line in the post-buckling region, is very difficult and hence this procedure also cannot be 

used in the present study. 

 Another procedure suggested by Kwon and Hancock (1992) to evaluate critical load is the intersection of the 

initial tangent and the fitted line in the post-buckling region of the plot between log of load versus the lateral 

deflection (Fig.7). Critical loads thus calculated are tabulated in Table 3 and show a good agreement with the 

theoretical critical load calculated.     

 Columns CC1 and EC1 fall in the category of short column and the strength of the columns are based on the 
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strength criteria. Similarly column EC5 exhibits reversal of deflection phenomena (Double curvature). Hence, the 

critical load calculated based on the theory is more conservative.   

DESIGN APPLICATIONS 
 A rational and simple design procedure is developed to design a slender column subjected to axial load and 

eccentricity based on the above theory incorporating the realistic flexural rigidity values and the effect of 

slenderness ratio. The following design charts were developed to make the design easier. 
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CONCLUSIONS 

 A method is presented for predicting the ultimate load of a column subjected to axial load with uniaxial 

eccentricity, pinned at both ends and free of side sway. The pin ended concentrically loaded column may be treated 

as a special case of the general procedure. This method is substantiated by means of a set of experimental 

investigations conducted for different slenderness ratios. The following conclusions are made from the 

experimental investigations. 

 Slender columns with imperfections/eccentricity initially bend in single or double curvature, but in case of double 

curvature, when the load is increased gradually, the phenomenon of reversal of deflection takes place and failed in 

single curvature.  

 Short column with imperfections generally, subjected to compressive stress throughout its cross section, failed due 

to crushing, whereas slender column failed within elastic limit due to buckling. 

 Very slender columns with large load eccentricity developed tensile cracks with unbound deformations prior to 

failure. 

 Maximum strain at the time of failure is well predicted by the theory in the case of more slender columns. 

 Experimental critical loads has good correlation with the theoretical critical loads, hence the present theory can be 

validated. 

 Design charts are developed for easy design applications. 

 Because of the simplicity in the theory developed using design charts, for predicting ultimate loads, this procedure 

may be adopted to the field directly. 

 

Table 1 Specimen Details 
 

Colum

n No. 

Dimensions (mm) 

l/b 

Main 

Reinforce

ment 

Stirrups 
b D l 

CC1 

150 150 1200 8 

4 nos. of 

10 mm 

dia. 

8 mm dia. 

@ 150 mm 

c/c 
EC1 

CC2 

75 100 1500 20 
4 nos. of 

8 mm dia. 

6 mm dia. 

@ 75 mm 

c/c 
EC2 

CC3 

60 100 1800 30 
4 nos. of 

8 mm dia. 

6 mm dia. 

@ 60 mm 

c/c 
EC3 

CC4 

50 100 2000 40 
4 nos. of 

8 mm dia. 

6 mm dia. 

@ 50 mm 

c/c 
EC4 

CC5 

40 100 2000 50 
4 nos. of 

8 mm dia. 

6 mm dia. 

@ 40 mm 

c/c 
EC5 

 

Table 2 Observations 

 

Column 

No. 

Eccentricity 

(mm) 

Ultimate 

Load 

(kN) 

Ultimate 

deflection at 

midheight 

(mm) 

Ultimate strain in 

compression face 

(×10-6) 
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Table 3 Correlation of experiment and predicted strength 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Short column 

** Double curvature failure 

 

 

 

 

 

 

 

 

 

 

 

CC1 7.50 595 2.28 1.545 

CC2 3.75 325 2.34 1.274 

CC3 3.00 130 9.45 0.690 

CC4 2.50 87.5 10.79 0.350 

CC5 2.00 37.5 24.13 0.220 

EC1 37.50 320 4.98 1.835 

EC2 18.75 216 13.92 1.542 

EC3 15.00 109 10.79 0.883 

EC4 12.50 75 5.07 0.435 

EC5 10.00 112.3 10.96 0.192 

Column No. 

Ulti

mat

e 

Loa

d 

(kN

) 

Criti

cal 

load, 

Pe   

(kN) 

from 

Log 

P Vs. 

δ 

The

oret

ical 

criti

cal 

loa

d, 

Pcr  

(kN

) 

Critical 

Strain (×10-

3) 

Pe/ 

Pcr 
εe/ εcr   

Expe

rime

nt, εe 

The

oret

ical

, εcr   

CC1 595 
595.

0* 

621

.0 

1.84

5 

2.0

00 
* 0.923 

CC2 325 
251.

0 

241

.3 

1.37

4 

1.5

85 

1.0

42 
0.867 

CC3 130 
120.

22 

116

.47 

0.69

0 

0.7

22 

1.0

32 
0.956 

CC4 
87.

5 

63.1

0 

59.

97 

0.35

0 

0.4

00 

1.0

52 
0.875 

CC5 
37.

5 

20.8

9 

23.

71 

0.22

0 

0.2

42 

0.8

81 
0.909 

EC1 320 
320. 

0* 

342

.0 

1.83

5 

2.0

00 
* 0.918 

EC2 216 
138.

1 

130

.0 

1.54

2 

1.5

85 

1.0

62 
0.973 

EC3 109 
57.5

4 

51.

72 

0.88

3 

0.7

22 

1.1

13 
1.222 

EC4 75 
28.8

2 

24.

05 

0.43

5 

0.4

00 

1.1

99 
1.088 

EC5 
112

.3 

87.0

0** 
- ** 

0.2

42 
** ** 

Mean 1.0

54 0.970 

Coefficient 

of Variation 

0.0

91 0.119 

Standard 

Deviation 

0.0

96 0.116 
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Fig.1 Geometry and reinforcement details 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 Test Setup 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 Buckling of columns 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 Modes of failure 
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Fig.5 Load Vs. Midheight Deflection (Columns with l/r ≤ 20) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6 Load Vs. Midheight Deflection (Columns with l/r > 20) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 Experimental Critical load - Log P Vs. δ (CC4) 
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Fig.10 
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Nomenclature: 

 

Deff = Effective depth  

Dgr = Depth of cracked section at midheight 

Dnet = Depth of gross section at midheight 

Es =  Secant modulus of concrete 

Leff =  Effective length of the column 

EP  = Euler’s buckling load 

crP  = Critical buckling load of the column 

 Pe
 = Experimental critical buckling load of column  

uX = Depth Neutral axis 

 e  =  Eccentricity 

ccf  =  Ultimate 28 days cylinder compressive strength of concrete 

 p   =  Percentage ratio 

  =  Maximum strain in concrete. 

cr  = Critical Strain 

o =  Concrete strain corresponding to stress ccf  

  = Deflection at the mid section 

 λ = Slenderness ratio 
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