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A B S T R A C T

Blindness and vision loss contribute to irreversible retinal degeneration, and cellular therapy for retinal cell
replacement has the potential to treat individuals who have lost light sensitive photoreceptors in the retina.
Retinal cells are well characterized in function, and are a subject of interest in cellular replacement therapy of
photoreceptors and the retinal pigment epithelium. However, retinal cell transplantation is limited by various
factors, including the choice of potential stem cell source that can show variability in plasticity as well as host
tissue integration. Dental pulp is one such source that contains an abundance of stem cells. In this study we used
dental pulp-derived mesenchymal stem cells (DPSCs) to mitigate sodium iodate (NaIO3) insult in a rat model of
retinal degeneration. Sprague-Dawley rats were first given an intravitreal injection of 3×105 DPSCs as well as a
single systemic administration of NaIO3 (40mg/kg). Electroretinography (ERG) was performed for the next two
months and was followed-up by histological analysis. The ERG recordings showed protection of DPSC-treated
retinas within 4weeks, which was statistically significant (* P≤ .05) compared to the control. Retinal thickness
of the control was also found to be thinner (*** P≤ .001). The DPSCs were found integrated in the photo-
receptor layer through immunohistochemical staining. Our findings showed that DPSCs have the potential to
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moderate retinal degeneration. In conclusion, DPSCs are a potential source of stem cells in the field of eye stem
cell therapy due to its protective effects against retinal degeneration.

1. Introduction

Retinal degenerative diseases are caused by many genetic and en-
vironmental factors, and can lead to incurable blindness even in de-
veloped countries. This complete impairment of vision tends to be the
major outcome when left untreated due to the loss of photoreceptors
[1]. The pathological pathways of these diseases differ on onset, but the
ensuing degeneration share similar mechanisms [1]. The apoptosis that
occurs in the degenerating retina can involve for example, the outer
nuclear layer (ONL), inner nuclear layer (INL), and photoreceptor layer
[2]. Some retinal cells are capable of evading apoptosis, and this may be
utilized in visual restoration with treatments such as implants [3].
Other than implants, transplanting functional retinal cells may be key
to restoring vision.

In animal models, replacing dysfunctional photoreceptors was
shown to have an influence on retinal function and morphology. This
replacement and protection approach in preclinical research are being
done with various cell types, and is a more feasible, short-term aim due
to the slow-progressing nature of most clinical conditions [4]. It is
postulated that this protection and maintenance of retinal function is
from the release of growth factors by donor cells. Apart from retinal
neurons that make up most of the retina, these methods can also im-
prove retinal pigment epithelium dystrophy [5]. Currently, age-related
macular degeneration (AMD) and retinitis pigmentosa (RP) are the
main research focus in the application of a suitable stem cell therapy
[4,6–8].

Dental pulp stem cells (DPSCs) are a type of stem cell that have been
recently hypothesized to have regenerative and protective properties in
eye diseases model [9]. The use of these neural crest-derived cells in
neural regenerative medicine has gained widespread popularity be-
cause of its relative ease of isolation from adult teeth, which makes it
easily accessible from patients of all ages [10]. They also surmised that
the neural crest properties of DPSCs make these cells more suitable than
other mesenchymal stem cells, for example bone marrow derived me-
senchymal stem cells in treating central nervous system (CNS) injury
[9]. However, there are contradicting evidence regarding the differ-
entiation of DPSCs into neurons in vitro that either supports it [11,12]
or are against it [9,13].

Interestingly, it has been emphasized that DPSCs function in neural
support by way of paracrine secretions [14], which was shown in a
study on spinal cord injury treatment in rodent models to improve loco
motor function [15]. The paracrine mechanism was found to involve
the expression of neurotrophic factors (NTFs) such as nerve growth
factor (NGF), brain derived-neurotrophin factor (BDNF), and neuro-
trophin-3 (NT-3). In our study, the main objective is to utilize DPSCs as
a stem cell source to both protect and replace the degenerating retinal
cells in a Sprague Dawley rat model of retinal degeneration.

2. Methods

2.1. Dental pulp stem cells culture and expansion conditions

Dental pulp stem cells were obtained from a stem cell bank,
CryoCord (Cyberjaya, Selangor, Malaysia) at passage 2, and stored in
liquid nitrogen until further use. In brief, the 1ml ampoule of DPSCs
was thawed in a water bath at 37 °C for 1min (min) and transferred to a
15ml centrifuge tube containing 9ml of complete culture medium. The
medium consisted of DMEM-F12 (Thermo Fisher Scientific,
Massachusetts, USA) supplemented with 10% fetal bovine serum
(Thermo Fisher Scientific, Massachusetts, USA), and 1% penicillin-

streptomycin (Thermo Fisher Scientific, Massachusetts, USA). The tube
was then centrifuged for 5min at 1200 rpm. Cell count was performed
after the DPSCs pellet was resuspended in 1ml of complete culture
media. A seeding density of 3000 cells per cm2 was used for standard
culture conditions, where DPSCs were incubated at 37Co in 5% CO2.
The media was replenished every 3 days until 70% confluency. For
expansion, DPSCs were trypsinized with 0.25% EDTA (Thermo Fisher
Scientific, Massachusetts, USA), centrifuged for 5 mins at 1200 rpm,
and reseeded accordingly.

2.2. Immunophenotyping of dental pulp stem cells

Immunophenotyping of DPSCs was performed with the FACS Aria
III (Beckon Dickinson Biosciences, USA) flow cytometer. In summary, a
total of 2.0× 105 DPSCs were aliquoted into several flow tubes, and
centrifuged for 7min at 2000 rpm to form cell pellets. After aspiration,
the pellets were re-suspended in 100 μl of 0.2% BSA (Sigma-Aldrich,
Missouri, USA) in 1 × phosphate buffered saline (PBS). Fluorochrome-
conjugated antibodies were added to the tubes and incubated at room
temperature (24 °C) for 30min. The antibodies (Abcam, Cambridge,
UK) were specific to CD90, CD73, CD166, CD44, CD34, CD45, HLA-DR,
and CD19. The cells were then washed with 1×PBS and centrifuged at
2000 rpm for 7min. The pellets were re-suspended in 400 μl of 0.2%
BSA in PBS and analyzed using flow cytometry. The acquired data was
analyzed using BD FACSDiva Software v6.1.2 (Becton, Dickinson
Biosciences, USA).

2.3. Animal care and production of retinal degeneration model

Male Sprague Dawley rats, weighing approximately 150–300 g at
6–8 weeks old, were purchased from Sinar Scientific (Selangor,
Malaysia), and housed in an animal biobubble facility (Tissue
Engineering Centre, Kuala Lumpur, Malaysia). Food pellets (Altromin,
Lage, Germany), water, and bedding were provided/changed ad lib. The
housing conditions were maintained under a specific environment at
21 °C with a 12-h light/12-h dark cycle. To produce the retinal de-
generation model, sodium iodate (NaIO3) (Alfa Aesar, Massachusetts,
USA) was dissolved in Hank's balanced salt solution (HBSS) to achieve
4% and stored at room temperature (24 °C). The solution was sys-
temically administered at a dose of 40mg/kg through the tail vein. The
control group was given HBSS injection. All animals were treated in
accordance with the Association for Research in Vision and
Ophthalmology Statement for the Use of Animals in Ophthalmic and
Vision Research. All experimental protocols were approved by the
Animal Care and Use Committee of the University Putra Malaysia
through the Office of Animal Resources.

2.4. Intravitreal transplantation of dental pulp stem cells

Dental pulp stem cells were transplanted 48 h prior to NaIO3 ad-
ministration by first re-suspending centrifuged DPSC pellets in Hank's
Balanced Salt Solution at a density of 10,000 cells/ul. The animals were
anesthetized with a cocktail of ketamine (35mg/kg, Ketaset; Fort
Dodge Animal Health, Fort Dodge, IA) and xylazine (5mg/kg,
TranquiVed; Vedco, Inc., St. Joseph, MO). The cornea of the right eye
was anesthetized with 0.5% proparacaine hydrochloride (Alcon, USA),
and a tract into the intravitreal space was made using a 30 G needle.
Then, 3 ul of DPSC suspension was injected into the space using a 30 G,
10 ul blunt Hamilton syringe (Hamilton Co., Reno, NV) through the
supertemporal area posterior to the lens. Taking care, to avoid lens
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penetration and vein vortex damage, a special ophthalmoscope was
used to view the fundus (Volk Optical Inc., Mentor, OH). The un-in-
jected left eye served as a control.

2.5. Electroretinography of rat visual functions

Rats were first dark adapted for 12 h (h) before the test. Anesthesia
was administered through intramuscular injection of ketamine (35mg/
kg, Ketaset; Fort Dodge Animal Health, Fort Dodge, IA) and xylazine
(5mg/kg, TranquiVed; Vedco, Inc., St. Joseph, MO). The pupils were
then dilated with topical 1% tropicamide (Alcon, USA) and the corneas
anesthetized with 0.5% of proparacaine hydrochloride (Alcon, USA).
Silver chloride electrodes were placed on the cornea of each eye, the
reference electrode was placed on an ear while the ground electrode
was placed in the tail. The scotopic ERG full-field readings were then
taken under 3.0 cd.s/m2 standard flash. Twelve separate responses were
taken and averaged with the Roland Consult ERG system (RETI-port,
Roland Consult; Brandenburg, Germany). Readings were taken on day
1, day 40, and day 70 after NaIO3 administration.

2.6. Enucleation and histopathology of stem cell-treated retina

Upon completion of final ERG, the rats were euthanized by lethal
injection of sodium pentobarbital (150mg/kg). The eyes were en-
ucleated and snap-frozen in liquid nitrogen. After OCT-embedding and
equilibration at −20 °C, the tissues were then sectioned into slices of 4
um and mounted on histological slides. After fixation with 4% paraf-
ormaldehyde for 15min, standard Hematoxylin & Eosin (H&E) (Sigma
Aldrich: Steinheim, Germany) staining was performed. The stained
slides were mounted and a coverslip was placed before being observed
under a light microscope.

2.7. Immunofluorescent staining of transplanted dental pulp stem cells in the
retina

The sections were permeabilized with 0.15% triton X-100 in 1 ×
PBS and washed with 0.025% triton X-100 in 1 × PBS, three times. The
sections were then blocked with 10% fetal bovine serum (FBS) and 1%
bovine serum albumin in 1 × PBS and incubated for 2 h at room
temperature. Retinal primary antibodies were added to the sections—
1:250 rabbit anti-PKCα (cat no. AB32376, Abcam, Cambridge, UK),
1:250 mouse anti-rhodopsin (cat no. sc-57,432, Santa Cruz
Biotechnology, Texas, USA), 1:500 mouse anti-RPE65 (cat no.
AB78036, Abcam, Cambridge, UK), or mouse anti-stem 121 (cat no.
Y40410, TaKaRa, Shiga, Japan), and incubated overnight. After that,
the sections were washed three times and secondary antibodies were
added— 1:400 anti-mouse AF594 (cat no. AB150116, Abcam,
Cambridge, UK) or 1:400 anti-rabbit AF594 (cat no. AB150080, Abcam,
Cambridge, UK) to the retinal sections and incubated for 1 h at room
temperature. The slides were washed again, and mounting medium
(Santa Cruz Biotechnology, Texas, USA) was added with a coverslip.
The sections were then viewed under a fluorescent microscope
(Olympus, Tokyo, Japan).

2.8. Statistical Analysis

Mean values± SD were calculated from the data obtained from 6
rats per experimental group using Statistical 5.0 software (Chicago, IL,
USA). The statistical analysis for ERG recordings was performed using
one way-ANOVA with Tukey's multiple comparisons test. The retinal
thickness analysis was performed using an unpaired t-test. P values<
.05 were considered significant.

3. Results

3.1. Immunophenotyping of dental pulp stem cells

Dental pulp stem cells exhibit fibroblast-like morphology in stan-
dard culture conditions (Fig. 1). The DPSC immunophenotype consisted
of highly expressed CD90 (99.3%), CD73 (99.7%), CD44 (99.3%), and a
slightly lower expression of CD166 (60.9%). On the other hand, there
were no expressions of endothelial and hematopoietic cell markers –
CD19, HLA-DR, CD34, and CD45 (Fig. 2).

3.2. Electroretinographic and histological analysis of DPSC-treated retinas

Electroretinography was performed throughout the study. The sco-
topic response at 3.0 cd.s/m2 was detected and recorded for two months
following cell transplantation. The b-wave amplitude detected in DPSC-
treated rats and control rats (HBSS) displayed differences on day 1, day
40 and day 70. For both DPSC-treated rats and control rats, b-waves
were shown to decrease with time but on day 40, the former demon-
strated a slower deterioration of retinal functions and yielded a statis-
tically significant result in comparison with the HBSS control group
(Fig. 3A). The difference could be observed in the ERG waveforms
(Fig. 3B). On day 70, there were no obvious changes between both the
treated retina and the control. Interestingly, histological analysis of the
retinal sections showed that DPSC-treated retinas were significantly
thicker than the control after one month following stem cell treatment
(Fig. 3C). Sodium iodate, when administered, causes retinal degenera-
tion particularly in the RPE and layer of rods and cones (Fig. 3D).

3.3. Immunohistochemical staining of DPSCs in the treated retina

Immunohistochemical staining of sectioned retinas were performed
to identify localized DPSCs in the treated retina. The retinal sections
were stained with antibodies specific to retinal cell markers- rhodopsin
(Rho) and RPE65. Anti-STEM121 antibodies were used to track the
transplanted DPSCs two months after intravitreal transplantation. 4′,6-
diamidino-2-phenylindole (DAPI) was used as a counter stain in the
retina for nucleus visualization. In a healthy retina, rho and RPE65
expression is highly specific, and is confined to the photoreceptor layer
and RPE layer, respectively (Fig. 4A). The administration of sodium
iodate resulted in the degeneration of the layers and hence, a loss of rho
and RPE65 expression. When stained with cytoplasmic anti-STEM121
antibodies, the tissue section revealed a positive staining of DPSCs in

Fig. 1. Dental pulp stem cell morphology in standard culture conditions. The
stem cells exhibited fibroblast-like morphologies. The cells were viewed under a
phase-contrast microscope at a total magnification of 100 ×, where the scale
bar denotes 200 μm.
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the photoreceptor layer of treated retinas (Figure 4B).

4. Discussion

This study provides the first evidence showing human DPSC-medi-
ated rescue of the retina in a rodent model of retinal degeneration. Stem
cells are unspecialized cells that have the potential to differentiate into
various cell lineages. DPSC, also known as postnatal DPSC, is a type of
MSC that was first isolated by Gronthos et al. (2002) [16]. These cells
are known to have high proliferative and clonogenicity levels, and are
able to generate highly calcified colonies [16]. In standard culture
conditions consisting of DMEM supplemented with antibiotic and FBS,
DPSCs exhibit a morphology that is typical of fibroblast-like cells and
are plastic-adherent (Fig. 1). Identifying these cells through im-
munophenotyping revealed positive expressions of CD90 (99.3%),
CD73 (99.7%), CD44 (99.3%), and a slightly lower expression of CD166
(60.9%) (Fig. 2). These known markers are positively expressed in

human DPSCs, and are crucial for stem cell verification [17]. There
were no expressions of CD19, CD45, CD34, and HLA-DR, which in-
dicated no contaminating cultures of non-dental pulp stem cells, such as
hematopoietic stem cells [18].

In this study, the application of DPSCs in the treatment of retinal
degeneration was explored. The model used was chemically-induced by
NaIO3 to cause retinal degeneration. It selectively reacts with RPE to
induce cytotoxicity, which in turn leads to apoptotic photoreceptors
due to the disruption of homeostatic relationships between both cell
layers [19–21]. Several dose ranges have been studied from 20mg/kg
up to 75mg/kg, and a NaIO3 dose of 25mg/kg was the least needed to
produce a retinotoxic effect [21–23]. An optimum dose of 40mg/kg
was used in this study so as to reduce any possible risks of systemic
damage [24]. Following DPSC-transplant and NaIO3 administration,
there were no statistically significant differences in the ERG b-wave
amplitude between the treated and control groups within 24 h
(Fig. 3A). After one month, the control group revealed a larger

Fig. 2. Flow cytometric results showing DPSCs expression of mesenchymal and endothelial- hematopoietic stem cell markers. The cultured DPSCs showed positive
expression of mesenchymal markers (CD166, CD90, CD73, CD44) and negative expression of endothelial-hematopoietic stem cell markers (CD19, CD45, CD34, HLA-
DR).
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reduction of the amplitude in comparison with the treated group. The
difference was immediately visible in the ERG waveforms (Fig. 3B).
This showed a protective role of DPSCs in the retina. Histological
evaluation of the morphological changes in DPSC-treated rat retina and
control showed a statistically significant difference in retinal thickness
after one month (Fig. 3C). This finding corroborated with the electro-
physiological data obtained earlier with ERG and further cements the
potential role of DPSC-mediated rescue of the retina. The overall
thinning of the tissue was due to the death of RPE and photoreceptors
by NaIO3, which causes rosette-patterned lesions to form in the outer
retinal layers (Fig. 3B).

To date, no study has been done on the underlying mechanisms of
DPSC-mediated retinal rescue from NaIO3 insult however, a study done
by Mao et al. (2018) showed that MSCs were able to prevent NaIO3-
induced RPE cell death in vitro through the deactivation of NLRP3 in-
flammasome by NF-κB upregulation [25]. DPSCs are a subset of MSCs,

and hence may share similar cellular reparative mechanisms. Interest-
ingly, it has been implied that DPSCs are more suitable candidates for
neural regeneration [26–29]. The retina is composed mostly of spe-
cialized retinal neurons. Several studies have been done to show that
DPSCs possess increased neurogenic and neuroprotective capabilities
over other types of human MSCs in in vitro and in vivo studies [30–32].
This could be explained by the heightened expressions of neurotrophic
factors (NTF) by DPSCs [30]. Recently, Mead et al. [33] were able to
show DPSC-mediated neuroprotection as well as functional preserva-
tion in a rodent model of glaucoma [33]. The authors suggested NTFs as
the main contributor. However, it is important to note that the model
used in their study was induced by transforming growth factor beta 1
(TGF-β1), not NaIO3. On day 70, the DPSC treated and control groups in
our study showed equally reduced b waves. This was not explored
further, but the reason could be due to the persistent toxicity of NaIO3
in the rodent retina. Optimizing the number of cells needed per

Fig. 3. Electroretinographic and histological analysis of DPSC-treated retinas. A. ERG b-wave assessment of retinal functions at 3.0 cd.s/m2 light intensity, where day
40 yielded a statistically significant result between the DPSC-treated and HBSS-control NaIO3 group, but not day 70. B. Representative images of ERG waveforms
produced by the DPSC-treated and control groups. The results are presented as mean +/− SD. The P value was obtained using one-way ANOVA and Tukey's multiple
comparisons test, * P≤ .05. C. Histological analysis on the treated and control retina showed that there was a significant change in the thickness of the retinal layer
after one month following stem cell treatment, which correlated with the ERG findings. The results are presented as mean +/− SD. The P value was obtained using
an unpaired t-test, *** P≤ .001. D. The reduction in retinal thickness is due to sodium iodate acting on the RPE and subsequently, the layer of rods and cones. The
representative images of healthy and sodium iodate-induced retinas were viewed at 40 × total magnification. The black arrow indicates a lesion with degenerated
RPE, rods and cones photoreceptor layer. The scale bar denotes 250 um.
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transplant could also improve this result.
To observe whether DPSCs have localized in the retina after in-

travitreal transplantation, immunohistochemistry was performed with
anti-STEM121 antibodies, which specifically targets human cells.
Positive staining of DPSCs were observed in the retina one month after
transplantation (Fig. 4). The cells were found in the photoreceptor

layer, which suggests that integration of localized DPSCs from the in-
travitreal space has occurred. Other studies however, contrasted with
this finding by showing that most DPSCs and MSCs remain in the
vitreous with only a few cells integrating in the RGC layer. The study by
Mead et al. [33] did not observe any localization of DPSCs within the
retinal layers [33]. Similarly, recent studies on MSCs that were

Fig. 4. Immunostaining assay of retinas treated with DPSCs, and visualized by fluorescence microscopy. 4′,6-diamidino-2-phenylindole (DAPI) was used as a counter
stain to the anti-rhodopsin (rho), RPE65, and STEM121 (S121) antibodies. A. Healthy retinas constitutively express rho and RPE65 expression. It is highly specific
and is confined to the photoreceptor layer and RPE layer, respectively. B. Staining of Texas red (TR)-conjugated antibodies specific to rho, RPE65, and STEM121. A
marked reduction of RHO and RPE65 was observed in the DPSC-treated retina but positive STEM121 staining was detected in the photoreceptor layer, as indicated by
the white arrow. The images were taken under a fluorescent microscope at 40 × total magnification. The scalebars denote 500 um. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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transplanted into the vitreous space reflected this [34,35]. However,
the models used in those studies were not induced by NaIO3, so it is
hypothesized that the dysregulated retinal layers caused by the che-
mical could allow DPSCs migration into the photoreceptor layer. This
was supported by studies involving the NaIO3 model, where trans-
planted stem cells were observed to preferentially migrate to sites of
retinal injury [36,37]. The integrated DPSCs were not found to express
RHO and RPE65 at the end of this study, but a separate study done by
Bray et al. (2014) has shown that human DPSCs are able to express the
photoreceptor marker rhodopsin when co-cultured with rat retinal ex-
plants [38]. As such, further studies are needed to investigate the dif-
ferentiation potential of transplanted DPSCs in the retina.

5. Conclusion

Stem cell therapy has a high potential in enhancing the life quality
of patients experiencing ocular dysfunctions. In this study, mesench-
ymal stem cells taken from dental pulp (DPSCs) have been shown to
possess therapeutic capabilities in protecting the retina from retinal
degeneration. DPSCs were able to protect the visual functions and, to a
certain extent, the retinal morphology of NaIO3-induced rats within two
months. The cells were also found to have localized in the photo-
receptor layer. However, the protective effect is limited, and it could be
due to the persistent toxicity of NaIO3. In our study, we used DPSCs to
recover the RPE and photoreceptor cells to restore vison in our rat
model. Even so, DPSCs are a potential source in stem cell therapy for
treating retinal degenerative diseases.
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